Plate LiV.

 The figures on this Plate are semi-diagrammatic.Acanthephyra debilis A. M.-Edw.
Fig.1. A longitudinal section of a photophore from the protopodite of a pleopod. The cellular layer (c.), which is apparently derived from the epithelium, is composed of long cells with densely staining nuclei at their outer ends. The only cytoplasm which is visible lies between the nuclei and the imer face of the lens. $\times 210$. (Compare fig. 1, Pl. LII.)

Sergestes challengeri Hansen.

Fig. 2. A longitudinal section of the eye-stalk showing the photophore ($p h$.) lying close to the eye (e.) and separated from it by a curtain of black pigment (p.). $\times 160$.
3. A photophore from the penultimate joint of the second maxillipede in transverse section. $\times 380$. (Compare fig. 3, Pl. Lill.)
4. A transverse section of the branchial chamber showing an arthrobrmeh (a.) and one of the four photophores (p h.) which are set in the roof of the cavity and appear to illuminate the gills from above, $\times 44$.
5. The same photophore on a larger scale. The two layers of the lens (i.l, and o.l.) and the first cellular layer (c.') are formed from the cuticular and epithelial layers of the imner surface of the branchiostegite. $\times 380$.

Reference letters:-

a. Arthrobranch.
b. Branchiostegite.
c. Cellular layer (in Acanthephyra.)
c^{\prime}. First celluiar layer (in Sergestes.)
$c^{\prime \prime}$. Second cellular layer (in Sergestes).
c. Eye.
e.l. Epithelial cell-layer.
g. Cone of minute highly refractive granules in close connection with nerve-strand.
i.c. Inner cuticular layer of branchiostegite.
i.l. Inner layer of lens.
m.l. Middle layer of lens.
n. Nerve.
o. Optic ganglia.
o.c. Outer cuticular layer of branchiostegite.
o.l. Outer layer of lens.
p. Curtain of black pigment between photophore and eye.
ph. Photophore.
r. Reflector or striated layer.
s.l. Sheathing layer of cells.
2. On the Varieties of Mus rattus in Egypt ; with General Notes on the Species having reference to Variation and Heredity. By J. Lewis Bonhote, M.A., F.L.S., F.Z.S.
[Received December 22, 1909.]
(Text-figures 58-62.)
While spending a few months recently at the Giza Zoological Gardens, near Cairo, I was enabled through the kindness of the Director, Capt. S. S. Flower, to examine a large number of the common House Rats of the district. I gladly took adrantage of the opportunities thus offered, as I was convinced that a close study of this species would throw some light both on the causes of variation and on the inheritance of the varieties that are found in such profusion in Mus rattus.

In addition to the rats which were caught in the Gardens, Dr. Charles Todd, of the Public Health Department, kindly allowed me to examine and measure all the rats that came into his hands during the time that I was in Cairo. These rats were taken in various towns and villages in the Delta by special catchers employed by the Public Health Deputment, the result being that
some 500 rats in all were carefully examinel and measured in the tlesh.

Before detailing the results of this examination it may perhaps be as well to review roughly the status and problems concerning this species, which is best known in this comntry as the "Old English Black Rat." Mus rattus is by far the commonest "ship-rat" and has thus become practically cosmopolitan in its distribution, but when it comes in contact with Mus norvegicus*, our common rat, a larger, stronger and more pugnacions species, it has to give way, and owing to this fact it is now extremely scarce in England.

In the East (India and the Malay States) Mus ratues is still holding its own, although in those localities M. norreyicus is gradually increasing, and in Egypt, while still very abundant and in some places the only house-rat, it is slowly but surely being superseded by the larger and stronger species.

The ready variability of Mus rattus together with the continual crossing of different forms due to the importation of foreign varieties on ships, has given rise to such a mass of variation, that the work of the systematist has been reudered very ditticult.

The actnal localities from which my specimens came were Ath, Damanhour, Abu Homos, Giza, Faŷim, Foneh, and Cairo. In all except the last two both M. rattus and M. norvegicus were found in about equal numbers; at Foneh, however, ont of 80 rats only three were M. noregicus. From Cairo itself I did not see many rats, but all those met with were M. ratlus ; and Capt. Flower tells me that M. norvegicus is not yet known there. As regarts the Giza Girdens, which lie on the opposite side of the river to Caino, the latter species has only appeared within the last eight years and forms now about 30 per cent. of the rats there. It has entirely onsterl the fied-rat (Arvicanthis) which used to aboum in the Gardens.

As regards the proportions of the sexes, both M. worregicus and the two forms of \bar{M}. raltus show a slight excess of females, the actual figures being as follows:-

$$
\begin{aligned}
& \text { Percentage of males in } 1 / \text {. morvegicus............... } 42 \% \\
& \text { ", } \quad \text { M. r. tectornm } 44 \% \\
& \text { ", } \quad \text { J. r. alexamblinus } 50 \% \text {. }
\end{aligned}
$$

The higher percentage of females in M. norvegicus, if always present, would tend, apart from other reasons, to cause a higher rate of increase of this species at the expense of other species.

In both speries there is pactically 110 diflerence in the size of the sexes, but the males have a wider range of variation.

Thus we have in

> 1/. norregichs o's, himd foot $28-43 \mathrm{~mm}$., q's $30-44 \mathrm{~mm}$.
> V. rattus o's, $\quad, \quad 2638 \mathrm{~mm}$., of's $29-38 \mathrm{~mm}$.

[^0]
Mus rattus in the Imlian Region.

In the Indian Region in particular this species has been burdened with a tremendous number of specific names, given to any variety which did not appear to fit in with the existing descriptions; and with a view of partially clearing up this tangle of names, I went into the matter at some length a few years hack .

Briefly summed up my conclusions were as follow: :-
If the large towns and seaports, where the but population is apparently as cosmopolitan as the human, are put out of consideration it appears:-
(i.) That in most localities three fairly distinct forms are found;
(ii.) That in any particular locality individuals belonging to the same form do not show much variation and intermediates hetween the forms are comparatively scarce;
(iii.) In most localities the same three forms are easily recognisable though differing slightly from their corresponding varieties in other places.
I, therefore, divided the species into three subgroups, representing the three forms, and distinguished them as follows:-
(i.) Julorensis \dagger subgroup.

Hairs of underparts white to their bases. Hind foot 30 mm .
(ii.) Rufescens subgroup.

Hairs of underparts white with slate-coloured bases. Hind foot 33 mm .
(iii.) Giriseiventer subgroup.

Hairs of underparts entirely slate-coloured or tipped with fulvous. Hind foot 35 mm .
In addition to the characters given above, the subgroups appeared, from collectors' notes, to have slightly different lanhits, the last-named being found chiefly in houses, Jalorensis in the hilly districts, and Rufescens in the date-palms.

On this plan, it became comparatively easy by careful reference to original descriptions and specimens to refer almost all the varieties which had been described, to one or other of the subgroups, and then, by noting the type locality of each variety, the mass of names became reduced to a manageable and fairly logical order. Where two descriptions had been applied to rats from the same locality, it was in most cases at once obvious fiom those descriptions that they were not synonyms but referwed to individuals of different subgroups.

Without more material I did not feel justified in making further comment, but left the work as a foundation to be improved and elaborated should a future opportunity arise.

In 1907, in the Mem. Ind. Mus. i. no. 1, Dr. Hossack has

[^1]+ I named the subgroups, not after the oldest species but after the one of which the original description would leave least doubt as to the main characters of the subgroup.

Proc. Zool. Soc.-1910, No, ILIII.
(aticised my paper and eomes fo the comelusion that my offort hass not eleared up the confusion and that all these mats belong to one and the same species- $1 /$ us rultus.
1)r. Hossack's remarks, fair and just as they aprear to be, fail from the fact that we were working at the sulyeet from entirely diflerent points of view -he as a mealical man, anxions to know the nomber of species by which the phate might be eonseyed I, as a zoologist, secking fur a haw and order in the apmently immmerable varieties fond among these rats. For Dr. Ilassalck's purpose it is suflicient to know that there are but two species of true rats, usually fomm in houses-the shont-tailech. heavy-holt and practically insariable Mus moregicus, amd the long, slender, and extromely varinhle Jus rattus, which inclmbes all the varieties bearing the mass of mames that so eonfused my critic. Hal he written to me in the first place, I eonld have told him at once that all these long-tailed rats belonged to one ren y variable species, and that in the large towns, where all his material was procured, no order or classification was possiblo as the varieties had become hopelessly mixel and crossed. hat that in the comotry places the varieties were much better definet. and apparently bred true. The question of the classification and study of these varieties is in specialised stmy for zoologists, mind it is not to be expected that a medical man, stulying the plagne, should he able to derote the time necessilly for the thashing out of such matters.

It would therefore have heen hetter had he applied to recogniser authorities for his information, rather than attempt a task in a specialised sulject ontside the seope of his investigations.

1 am shat to have had this opportmity of replying to 1r. Hossack, for many people fon not yet realize that the study of geographical forms and mimute variations has a very great bearing on many large and important zoological problems, but need not embern the man engaged on other cognate investigations, amd in the present instance it is sufficient for him to know that all these vanicties of the long-tailed at belong to one species, Thus ratlues.

Mus mattus in ligmpe.

In Egypt we find two distinct forms of h/as rattus- the one with pure white underparts and white feet, which was named
 aml dak feet, which may be known as Mus elfatombrimst. Between these two forms many intermediates ocem, the actual typical forms leing compantively rame \ddagger.

[^2]I have aheady referred to the fact that in India the three varieties of M. rattris may roughly be considered as hill, tree, and house forms ; but in Egypt, where the cultivaterl parts frequented ly these rats are low-lying and level plains, only two forms were found.

I male a number of careful observations in the Ciza Gardens, where both forms are found, to see whether the two varieties were really different in their habits, but such evidence as I was able to get together was very inconclusive. Large numbers of plane trees grow in the Garlens and on these, often at a consinlerable height from the ground, many heaps of the fruit, looking not unlike squirrels' dreys, were to be found. These were mudoubtedly brought together by rats, but investigation proverl that they were used merely as convenient platforms on which to feet, and not as sleeping or breeding places. The seeds of these treess are apparently a favourite food, and as it would be impossible for a rat to devour them in situ, they are picked and carried to the first convenient spot, generally a fork near the main trunk, to be revomed, and it is on such places that the accumnlated deboris, forms the apparent nests. On the other hand, the fruit which had fallen to the gromd was frequently taken into a neighbouring bush and eaten there, so that there is undoubtedly a tendency to an arboreal life.

On two occasions only did I actually see a rat in a tree, and neither time were they accurately identified, althongh one, I am almost certain, belonged to the white-bellied form (M. tectoram). Both forms were found living in burrows in the groumd as well as in the houses, so that there seems to be but little difference in habits between the two varieties. The apparent absence of the third (Indian) subgroup, however, taken in correlation with the lack of high ground, seems certainly siggestive, but I shall have more to say on this point later.

In studying the various forms of Mus rottus I found it conrenient to classify them into four grouns.
(i.) The Typical Tectoram, in which the haiss of the underparts are white to their bases and the upper surface of the hind feet is also white.
(ii.) The Grey Tectorum, in which the hairs of the underparts are white to their hases but the upper surface of the hind feet shows tiaces of brown.
(iii.) The Grey Alexandrinus, in which the hairs of the moderparts have slate-coloured bases and the upper surface of the hind feet shows much brown.
(iv.) The Typical Alexandrinus, in which the hairs of the underparts are slate-colomed throughout or nearly so, and the hind feet entirely brown on the upper surface.

In actual shate of colour much variation was shown. Croups (iii.) and (iv.) were constantly darker than grous (i.) and (ii.),
but in classifying them, reliance was only placed on the chameters noted above, which allowed no possibility of donbt.
[Mus norvegicus, on the other hand, proved very constant and mu variation in colom was noticeable. In this species, the hains of the molerparts have slate-nrey bases and the upper surface of the himd feet is pure white, a combination of chameters :pparently not fomm in M. rathes from Egypt.

Apart from this distinction, I/. norvegicus is a larger and more stontly built animal; the length of the tail nerer exceeds that of the lieal amd body, and the cars are shorter and more romded. There are alsn some easily tecognisable skull differences, which need not be gone into here.]

Every specimen was carefully measmed in the flesh by myself with the same callipers, so that erors from a comparison of measurements are reducer to a minmum. The measurements taken were: snont to root of tail, tail, lind foot, ear.

The lancest measurmonts in mm. Were as follows:-

		Heald \& body.	T'ail.	Ein.	Hinsl fort.
Mus norvegicus.	む ad. No. 250	253	$2: 33$	22	43
" "	\% ad. No. 215	295	204	19	41
Mus r. tectoram.	¢ ad. No. 203	188	232	21.	$3 \pi 5$
" "	¢ ad. No. 181	190	232	2.	36
Mus r. alexamdrinus.	ठ ad. No. 290	199	220	26	35
" "	¢ M. No. 987.	195	208	26	35

|These measurements are given only as showing the greatest sizes attamed; they are those of imblividuals and in no sense areage measurements, so that, for instance, it must mot be assmmed that the ems of $J /$. alexcmdrinns we on the avemge larger tham those of 17. Lectormm. Owing to the dificulty of arcurately estimating the age of amy indivilual, it is impossible tu give average measmements.]

The proportionate lengths of the borly am tail measmements were fomm to vary in both species, but in M. amregicus the tail mever exceeted the boly length. and in M. rathes the tail was always longer than the borly length.

The most reliable measurement therefore on which to make comparisons and the only one which dealt with a structural
 hime foot. 'This measmement may therefore be taken as a fair arterion of gemmal size and ats forming agood and reliable imbex for comparisom.

C'ures of this measmemont were mate, and on referring to that of Mus rallus ('I'able I., test lig. sis), we note that the male

Text-fig. 58.
Length of Hindfoot in mm .
26272829303132333435363738394041424344

Table I.
Curre of hind-foot measurements of Mus rattus (all form).
The dotted line represents measurcments of the males.
emre (rloterl line) shows there apices at 299 , $3: 3$, and 35 mm , amd that the female emve shows an apex at 30 and 35 with a break in contmity between 32 and 34 ; that is to say, both sexes show thre apices, and that therefore a larger number of rats hame hind feet of those thee measmements than of the intervening sizes. Now, as these measmements inclule mats of all ages, and as there is no reason why there should be more of one purticular age that mother, seeing that the breeding season is faily contimons thronghont the year, it follows that we have here three 'limits of growth, or, in other worls, that certain imbividuals reach their limit of size at these three points, and consenuently that the numbers at these points tend to accummate amd thas to form the apices in the emve. Those who accept Membel's theory would here maintain, and probably with justier, that each apex represents a mutation, amd that aroumd thene matations fluctuating variations would oceur so that, maless clonely exammed, the whole series wonh appear as a case of continnous variation.
'Sext-fig. 59.
Length of Hindfoot in mm.
2627282930313233343536373839404142

Tintil If.

Text-ig. 60.
Length of Hindfoot in mm .

'Table IIl. Curve of himd-foot measurements of Mus rattus alemombrinus [Groups iii. © iv.]. (N.B.-Tables II. \& III. are represented together in Table I.)

Tables II. and III. (text-figs. 59 \& 60) show the curves of 11.r. tectormm and M. r. alexamdrimus taken separately. In the finst table I have included all the rats which would fall modes groups (i.) aud (ii.), and in the second those included in groups (iii.) and (iv.) (see conte, p. 655).

The tectorum males show apices at 31 and 35 mm . with a slight, check at 33 , and the females at 30 and 35 with a slight check at $32-33$. In alexamdrimis the males show apices at 29 and 33 with a slight check at 35 , and the females a slight apex at 33 with a large one at 35 . There were no females of alpostmelrinus below 30, which accounts for the ahsence of the tinst apex.

This comparson makes it very clear that the apices in the geneal curve (Table 1 , text-fig. 58, p. 65T) are not meroly due to accident, but that the middle one at 33 represents the vaviety known as edercudrinus, and the langest one at 3.5 represents the white-bellied tectorum. The fact of the corven in Thhles II.
and III. showing traecs of the other apices, does not invalidate the reasoning as gromps (ii.) and (iii.) are intermediate forms.

Mus rattus.
 C'omparison of Indian and Eygptian Forms.

'The next question to arise is, what is the significance of the thim amd smallest apex at 29 and 30 mm . On reference to my paper guoted above in which I had divided M. ruttus into three sulghoups, we find the hind-foot measmements as follows :-

Jelorensis sul, gronp, hill form. Hind foot 30 mm . (29-31-5).
liufescens ", tree form. , 33 mm .
Griseicenter ,, house form. ,, 35 mm .
These measurements, it will be notel, correspond exactly to the three apices in the curves of the Egyptian rats; so that we are, I think, justified in considering the small apex at 29 to represent the hill form (Jalorensis subgroup) of the Oriental Ragion, but which has hecome, in the level country of Egypt, umecognisable externally.

This is a point which is of extreme importance from a deeper and more general point of view, for here, in a low-lying country, we have traces of a variety which in another part of the world has become the predominant form in the hills. Now, if contimmons rariation were the only method of evolution, we should find that in a level country all raviations suitable to the hills would he eliminated, so that, in comse of years, no trace of them would remain as they would be swamperl hy the more suitable fums, hut apparently this has not happened in the present instance. The small-footed ramety is still present in Egypt, femmeating the race, and still existing in sufficiently strong mmbers to spring up again yuickly and hecome a dominant form should it ever find itself muder suitable conditions.

Althongh, jerhaps, not absolutely conchasive, this affords consilmable evidence that the three snbgroups of J. rathus, which I first lifferentiated in 1903 and which are strongly confirmed hy the present work, probahly arose as mutations.

There is yet a further point. One of the characters of the Ifloremsis subgrom, (the hill form) is the pure white hains of the mulempats. In this case it is associaterl with a small hind foot, hut in Egypt we find it, in M. tectorum, which has the largest hind foot of the three forms. It is therefore evident that the colom of the underparts is a character which has not always hern inherited in connection with the size of the foot, but may neroll in any one of the subgroups, so that in one combtry it may he characteristic of the hill form, in another of the tree form, and so 011 *.

[^3]Comparison of M. nattus amd M. norvegicus.
Passing now from M. ruttus to M. norverficus and comparing Tahles I. (text-fig. 58, p. 657) and 1V. (text-fig. 61), we find a striking and surprising analogy in the curves. As in the case

Text-fig. 61.
Length of Hindfoot in mm .

Table IV.
Curve of hind-foot measurements of Mus norecgicus.
of M. rathus, M. norvegicus also shows three apices at 32,37 , and 39, but in this case there is no colour variation, and therefore no
groups, for being a separate mutation it might be found (if the hind-foot measurement were taken as the determinant character of the subgroup) in two or more of the subgroups.

The answer to this objection according to our present knowledge is that in any particular locality we have always found it associated with of e, cud only one, size of hind foot; that is to say, always in the same subgroup a defined by the size of the foot. Furthermore the breding puperiments, so lav ats they lase ane, seem to point to the fare that it is inherited in correlation with the size of the hind font in the ration Egynt.
means of individnally distinguishing the diflerent forms or mutations, as we may now, I think, call them.

Hers, therefore, in an entirely difierent pecies we find the same mutations present, and whereas in the case of the one (.1/. rathus) we we enabled to elistinguish maily the varions forms owing to the combination of the hind-foot chanacter with a colour chanater, yot in the other species (1/. norergicus) we are mable (o) sumbivide it into three forms, owing to the impossibility of definitely detecting which character is present in any particular indivichal. Nevertheless we have cognisance of chanaters (mutations) which camot be recognisell ly any external inspection of individuals, althongh we have proved their presence beyond is doubt.

It would of course be msh to be too positive, yet it is extremely milikely that these rats cemd inamy way to pair aceorling to their foot chanacter: If the ehanaters were therefore merely individual radiations, they would monbtedly tend to be swamped anm in even conve would result. 'Ihis, however, is not the cise. [For purposs of comprison we have alded ('T: ible V.. textfig. (62) a cmove of the hind foot of Acomys cahirimus; this, it will he noterl, is a perfectly simple curve with only one apex. As the number of lcomys measured (abont 100) wis nearly the same as the nmmber of $1 /$. alewandrinus, the comparison is a perfectly fair one.]

We have here, therefore, in 1f. noreryicos a splendid example of a Mendelian character (mutation) bemge (anded on mimpanerd throngh genemations ; and there can be little donbt that if these amimals fomed themselves moler certain comditions where small feet, for example, prove of great adsantage, very few generations would suttice for the small-footed race to become the dominant form.

The Mendelian theory enahles us to molerstand how a smallfooted race could be probluced in a vory short time, or how, if that finomainle matation were not present, the speries might die out lofore the commative efferts of Natural Selection on contimmons baniation would halre time to act.

General Iotes.

Thell work of value still remams to be dome lyempiny into
 fore the maly of mimute variations. Namy grompo of the smatlen
 of the Orimetal gromp of sumirels, oller similar pohlems of ereat "omphexity. In the fomer ease we have mombers of very elosely alliad fombs all inhabliting the same district, and each fomm has, alpmontly, its represmative in other meighboming mistricts. Systematiste of late years have been content to buden earla of

 siop: and untens the shbjeet is pumsted further; the chans
brought ahout by a multitude of mames is wonse than the old plan by which one name was made to cover all varicties.

More recently still, the rediscovery of Mendel's theory hats, at
Text-tig. 62.
Length of Hindfoot in mm .

Table V .
Curve of hind-foot mes-urments of foming cethirinus, to show simple curse fol comparison with previous l'ahles.
leant, wiven a woming hepothesis on which we may attempt to solve some of the problems of heredity ; and though 1 ann far from anhitting that Membel's law is the sole, on even the chief, findur governing heredity, it does moloubtedy help us to understand how these closely allied fomms can either (1.) exist in the same locality as ristinct varieties, or (ii.) in another locality become apparently lost although a closer inspection shows them to be present, only waiting for a suitable enviromment in which to develope.
'Lo prove this matter further, it hecomes neressiny to conduct Memblian experiments on these varieties. This I hase begun to do on a small seale. The experiments are, however, as yet in the initial stages amd mo definite results ran be staterl. So far as they have gone, we find that pure $1 /$. tectornm mated with pure 1/. tectornm have prohteed pure M. tectorum. Pure IV. alexandrimes when paime together have also bred absolntely true. A phir of grey d/ tectorm (sroup ii.) showing slight traces of brown on the feet prodncer young like themselves (group ii.) and grey I/. alsanemlitimes (group iii.).

Is far as it goes, therefore, this evidence seems to further contirm the fact that $1 / n$ s rathes should not be regarded as a speries in which variation has run wid, hat rather as a species containing certain definite mutations, which when mated together bred perfectly true. From its wamlering hahits and prolific bre ding mach intererossing takes place, griving rise to these immmerable varieties, but no hetter evilence comld he had of the purity of the gametes than the fart that when the apmently pure races me matel together (evon when eaptured amongst a mixed crowd) they breed absolutely true.

s゙ыmmary.

'The main points that have been brought out in this paper are as follows:-
(i.) 'Iwo vamoties (aml intermerliates) of 1/. rallus are found in Puypt.
(ii.) The himl fonst is takem :as atablame measmement and

(iii) These comes show thre apiees, the first being very swatl.
(iv.) These there apices comespond with the length of the himi foot typical of the thase sulgmons of $1 /$. ralles in the

 sobt mutations, and that the first and smallent ifrex eppesents 1.he falmensis subgroup lomed in the Otiental Region, but which from some (allse on other is phactieally nom-existent in Egypt.

It is pointed out that this may areome for the rery quick way in which somespecies acommotate themselves to altered suromndings, since if a favomalle motation is present in the speries very few generations wonld suffice to make it the dominant form.
(vi.) In J. rathes we foum that the longth of the hime footi was also correlated with external differences, and that the whitcbellied M. tectoram had a longer hind foot than the darker J. alexandirinus.

Although in the Oriental Region the pure white muldoparts is characteristic of one of the subgroups, yet in that region it is correlated with a different sized hind foot to that with which it is associated in Egypt. Therefore the length of the hind foot ame the colour of the mulerparts, althomgh both pure mutations, can probally be inherited independently.
(vii.) An examination of the hind-foot curve in M. morerficus shows also three apices, lut in this case there is no colomchameter by which the mutations may be distinguished externally. The length of the hind foot as a mutation is therefore a chanacter. common to two or more species.
(viii.) It is suggested that this enables us to moderstand how several very nearly allied forms of the same species (e. g. in J/us jerdoni and some of the Simidae) may exist in the same locality without losing their chanateristic differences, howerer small those differences may be.
(ix.) Further investigation on these lines is required by means of experments in heredity, amb so far as the author hats. carried these out the pure rarieties of M. tectorum and M. alexambinns were found to breed perfectly true.
(x.) Lastly, this paper clams to show that Jfus rutus is a species containing many slight but definite mutations which, as far as the evidence goes, breed true when paired together, and that the apparent immmerable and indefinite rariations are merely due to these animals being carried all over the world and mixing together in the large seaport towns.

In short:- The varieties in Mus rathus appear to run on definite lines and to have arisen as mutations, they are therefore inheriter on Mendelian lines. Of the three main varieties foumd in the Oriental Region only two oceur in Egypt, but this prper shows the presence of the third, though in very small numbers. Once of the characters of these varieties is shown to be present in another species, M. norregicus, althongh it camot be distinguished in any particular individual. It is further hinted that many of these socalled species which are very closely allied have probably arisen as mutations, and that it is due to this fact that they are able to exist side by sile under precisely the same conditions and yet preserw their characters intact. It may also be noticed that the colomrcharacter of the hairs on the underparts is also fomm in another. species, namely, the house-mouse, Wus musculus. II. m. yomtilis has the hairs white to their bases, while M. m. orientalis has slatecoloured hases. Both these forms oceme in Egypt.

[^0]: * Mus uororgions bircl. antedates Mus derumenus Pall. by which this species is better hnown.

[^1]: * 'Fasciculi Malayenses,' i. Zool. pp. 28 et seqq. (1903).

[^2]: * Mus lectorum Savi, Nuovo Giom. Pisi, 1x.5.
 fig. 1 (1812).
 borne in mind that those remarks were hased on Malay material, whaned in rentres removed from the inthence of finetisn shippine, whers in the present rase the

[^3]: - I iln aware that nil the evidences far brought forwarl it mizht he argued that, if the colour of the modeparts is unt aluay: found in correlation with the samesiand hind font, it is a haldacter ef hut litile use in distinguishing the suh.

